Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 814
Filtrar
1.
Biomed Pharmacother ; 174: 116579, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38631145

RESUMEN

BACKGROUND AND AIM: Diabetes-associated cognitive impairment (DCI) is a prevalent complication of diabetes. However, there is a lack of viable strategies for preventing and treating DCI. This study aims to explore the efficacy of baicalin (Bai) in attenuating DCI and elucidating the underlying mechanisms. EXPERIMENTAL PROCEDURE: GK rats fed a high-fat and high-glucose diet were utilized to investigate the therapeutic potential of Bai. Cognitive function was assessed using the Morris water maze and novel object recognition tests. To gain insight into the molecular mechanisms underlying Bai's neuro-protective effects, co-cultured BV2/HT22 cells were established under high-glucose (HG) stimulation. The modes of action of Bai were subsequently confirmed in vivo using the DCI model in db/db mice. KEY RESULTS: Bai restored cognitive and spatial memory and attenuated neuron loss, along with reducing expressions of Aß and phosphorylated Tau protein in diabetic GK rats. At the cellular level, Bai exhibited potent antioxidant and anti-inflammatory effects against HG stimulation. These effects were associated with the upregulation of Nrf2 and supressed Keap1 levels. Consistent with these in vitro findings, similar mechanisms were observed in db/db mice. The significant neuroprotective effects of Bai were abolished when co-administered with ATRA, a Nrf2 blocker, in db/db mice, confirming that KEAP1-Nrf2 signaling pathway was responsible for the observed effect. CONCLUSIONS AND IMPLICATIONS: Bai demonstrates a great therapeutic potential for attenuating DCI. The antioxidant defense and anti-inflammatory actions of Bai were mediated through the KEAP1-Nrf2 axis. These findings advance our understanding of potential treatment approaches for DCI, a common complication associated with diabetes.

2.
Brain Res ; 1835: 148932, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38609032

RESUMEN

Alzheimer's disease (AD) is a primary degenerative encephalopathy that first appeared as a decline in memory and learning skills. Over time, the condition's severity grew. Palmatine (Pal) alleviates Alzheimer's disease symptoms, which has neuroprotective benefits. Numerous investigations have demonstrated a close relationship among AD and gut structure changes. The aim of the research was investigating whether the improvement of Pal on AD is linked to regulating gut flora and autophagy. First, we used Aß1-40 to induce apoptosis in HT22 cells. After Pal treatment, apoptosis can be improved. Then, We used bilateral intracranial hippocampal injection of Aß1-40 for establishing the AD model, after treatment with Pal, the morris water maze experiment and eight-arm maze test demonstrated that Pal enhanced the AD rats' capacity for learning and memory, HE staining illustrated that Pal improved the morphological abnormalities of brain cells and gut tissue damage. Pal reduced the death of hippocampus neurons, as shown by Nissl staining. Pal substantially reduced Tau hyperphosphorylation and Aß accumulation in the brain, according to immunohistochemical labelling. Pal improved the expression of LC3, Beclin 1, AMPK, and suppressed the expression of mTOR and P62, as validated by RT-qPCR and immunofluorescence labelling. This suggests that Pal's treatment of AD may be associated with the control of the AMPK/mTOR autophagy signalling system. 16S rRNA sequencing and short-chain fatty acids (SCFAs) content detection analysis illustrated that Pal has the potential to enhance the content of SCFAs, reverse the alterations in gut microorganisms. It has been showed by the study that Pal could improve AD by activating autophagy signaling pathway and improving gut barrier changes.

3.
Sci Total Environ ; 927: 172069, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38582117

RESUMEN

Ferroptosis is a newly recognized type of programmed cell death that is implicated in the pathophysiological process of neurological disorders. Our previous studies have revealed that exposure to high concentrations of fluoride for long periods of time induces hippocampal neural injury and cognitive deficits. However, whether ferroptosis is involved in fluoride-induced neuronal death and the underlying mechanism remain unknown. In this study, the results indicated that exposure to high fluoride triggered ferroptosis in SH-SY5Y cells and in the hippocampus of mice. Fluoride exposure accelerated the lysosomal degradation of GPX4 and led to neuronal ferroptosis, while GPX4 overexpression protected SH-SY5Y cells against fluoride-induced neurotoxicity. Intriguingly, the enhanced chaperone-mediated autophagy (CMA) induced by fluoride stimulation was responsible for GPX4 degradation because the inhibition of CMA activity by LAMP2A knockdown effectively prevented fluoride-induced GPX4 loss. Furthermore, mitochondrial ROS (mtROS) accumulation caused by fluoride contributed to CMA activation-mediated GPX4 degradation and subsequent neuronal ferroptosis. Notably, the ferroptosis-specific inhibitor ferrostatin-1 (Fer-1) or the ROS scavenger N-acetyl-L-cysteine (NAC) alleviated fluoride-evoked hippocampal neuronal death and synaptic injury as well as cognitive deficits in mice. The present studies indicates that ferroptosis is a novel mechanism of fluoride-induced neurotoxicity and that chronic fluoride exposure facilitates GPX4 degradation via mtROS chaperone-mediated autophagy, leading to neuronal ferroptosis and cognitive impairment.

4.
Environ Pollut ; 349: 123958, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38621452

RESUMEN

Exposure to environmental cadmium (Cd) is known to cause neuronal death and cognitive decline in humans. Ferroptosis, a novel iron-dependent type of regulated cell death, is involved in various neurological disorders. In the present study, Cd exposure triggered ferroptosis in the mouse hippocampus and in the HT22 murine hippocampal neuronal cell line, as indicated by significant increases in ferroptotic marker expression, intracellular iron levels, and lipid peroxidation. Interestingly, ferroptosis of hippocampal neurons in response to Cd exposure relied on the induction of autophagy since the suppression of autophagy by 3-methyladenine (3-MA) and chloroquine (CQ) substantially ameliorated Cd-induced ferroptosis. Furthermore, nuclear receptor coactivator 4 (NCOA4)-mediated degradation of ferritin was required for the Cd-induced ferroptosis of hippocampal neurons, demonstrating that NCOA4 knockdown decreased intracellular iron levels and lipid peroxidation and increased cell survival, following Cd exposure. Moreover, Cd-induced mitochondrial reactive oxygen species (mtROS) generation was essential for the ferritinophagy-mediated ferroptosis of hippocampal neurons. Importantly, pretreatment with the ferroptosis inhibitor ferrostatin-1 (Fer-1) effectively attenuated Cd-induced hippocampal neuronal death and cognitive impairment in mice. Taken together, these findings indicate that ferroptosis is a novel mechanism underlying Cd-induced neurotoxicity and cognitive impairment and that the mtROS-ferritinophagy axis modulates Cd-induced neuronal ferroptosis.

5.
Expert Rev Anti Infect Ther ; : 1-10, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38536666

RESUMEN

INTRODUCTION: Human T-cell leukemia virus type 1 (HTLV-1) carriers may develop adult T-cell leukemia (ATL), or HTLV-1-associated myelopathy (HAM)/tropical spastic paraparesis (TSP). The evidence is limited regarding other diseases potentially associated with HTLV-1, such as HTLV-1-associated autoimmune diseases. AREA COVERED: We summarized the available information on complications associated with HTLV-1 infection. EXPERT OPINION: Previous studies showed that HTLV-1 carriers have an increased incidence of collagen diseases including Sjögren's syndrome, as well as dysthyroidism, diabetes mellitus, and atherosclerosis. Furthermore, cognitive deficits are observed in asymptomatic carriers and in symptomatic carriers who develop HAM/TSP. It is hypothesized that altered immunoregulation occurs as a result of persistent HTLV-1 infection. A systematic review and meta-analysis demonstrated that HTLV-1 infection itself has an adverse impact on overall survival. ATL alone cannot entirely explain the adverse impact of HTLV-1 infection on overall mortality, because the incidence is low, and therefore HTLV-1-associated diseases as a whole may contribute to the inferior clinical outcome. However, there are insufficient data to determine the causal relationship between HTLV-1 infection and each complication. While non-cancerous events linked to HTLV-1 infection are not fatal, they are likely to reduce quality of life. Large prospective studies should be conducted by international collaborators.

6.
Sci Total Environ ; 924: 171681, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38490422

RESUMEN

Nanoplastics, arising from the fragmentation of plastics into environmental pollutants and specialized commercial applications, such as cosmetics, have elicited concerns due to their potential toxicity. Evidence suggests that the oral ingestion of nanoplastics smaller than 100 nm may penetrate the brain and induce neurotoxicity. However, comprehensive research in this area has been hampered by technical challenges associated with the detection and synthesis of nanoplastics. This study aimed to bridge this research gap by successfully synthesizing fluorescent polystyrene nanoplastics (PSNPs, 30-50 nm) through the incorporation of IR-813 and validating them using various analytical techniques. We administered PSNPs orally (10 and 20 mg/kg/day) to mice and observed that they reached brain tissues and induced cognitive dysfunction, as measured by spatial and fear memory tests, while locomotor and social behaviors remained unaffected. In vitro studies (200 µg/mL) demonstrated a predominant uptake of PSNPs by microglia over astrocytes or neurons, leading to microglial activation, as evidenced by immunostaining of cellular markers and morphological analysis. Transcriptomic analysis indicated that PSNPs altered gene expression in microglia, highlighting neuroinflammatory responses that may contribute to cognitive deficits. To further explore the neurotoxic effects of PSNPs mediated by microglial activation, we measured endogenous neuronal activity using a multi-electrode array in cultured hippocampal neurons. The application of conditioned media from microglia exposed to PSNPs suppressed neuronal activity, which was reversed by inhibitors of microglial activation. Our findings offer detailed insights into the mechanisms by which nanoplastics damage the brain, particularly emphasizing the potential environmental risk factors that contribute to cognitive impairment in neurodegenerative diseases.


Asunto(s)
Microglía , Poliestirenos , Animales , Ratones , Poliestirenos/toxicidad , Poliestirenos/metabolismo , Microplásticos/metabolismo , Plásticos/metabolismo , Neuronas
7.
J Ethnopharmacol ; 328: 118113, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548119

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Alzheimer's disease (AD) is a progressive neurodegenerative disease. Tianma-Gouteng Pair (TGP), commonly prescribed as a pair-herbs, can be found in many Chinese medicine formulae to treat brain diseases. However, the neuroprotective effects and molecular mechanisms of TGP remained unexplored. AIM OF THE STUDY: This study investigated the difference between the TgCRND8 and 5 × FAD transgenic mice, the anti-AD effects of TGP, and underlying molecular mechanisms of TGP against AD through the two mouse models. METHODS: Briefly, three-month-old TgCRND8 and 5 × FAD mice were orally administered with TGP for 4 and 6 months, respectively. Behavioral tests were carried out to determine the neuropsychological functions. Moreover, immunofluorescence and western blotting assays were undertaken to reveal the molecular mechanisms of TGP. RESULTS: Although TgCRND8 and 5 × FAD mice had different beta-amyloid (Aß) burdens, neuroinflammation status, and cognition impairments, TGP exerted neuroprotective effects against AD in the two models. In detail, behavioral tests revealed that TGP treatment markedly ameliorated the anxiety-like behavior, attenuated the recognition memory deficits, and increased the spatial learning ability as well as the reference memory of TgCRND8 and 5 × FAD mice. Moreover, TGP treatment could regulate the beta-amyloid precursor protein (APP) processing by inhibiting the Aß production enzymes such as ß- and γ-secretases and activating Aß degrading enzyme to reduce Aß accumulation. In addition, TGP reduced the Aß42 level, the ratio of Aß42/Αß40, Aß accumulation, and tau hyperphosphorylation in both the 5 × FAD and TgCRND8 mouse models. Furthermore, TGP ameliorated neuroinflammation by decreasing the densities of activated microglia and astrocytes, and inhibiting the production of inflammatory cytokines. TGP upregulated the SIRT1 and AMPK, and downregulated sterol response element binding protein 2 (SREBP2) in the brain of TgCRND8 mice and deactivation of the EPhA4 and c-Abl in the brain tissues of 5 × FAD mice. CONCLUSION: Our experiments for the first time revealed the neuroprotective effects and molecular mechanism of TGP on 5 × FAD and TgCRND8 transgenic mouse models of different AD stages. TGP decreased the level of Aß aggregates, improved the tauopathy, and reduced the neuroinflammation by regulation of the SIRT1/AMPK/SREBP2 axis and deactivation of EPhA4/c-Abl signaling pathway in the brains of TgCRND8 and 5 × FAD mice, respectively. All these findings unequivocally confirmed that the TGP would be promising in developing into an anti-AD therapeutic pharmaceutical.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Ratones Transgénicos , Sirtuina 1 , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Enfermedades Neuroinflamatorias , Proteínas Quinasas Activadas por AMP , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Cognición , Modelos Animales de Enfermedad
8.
J Neurooncol ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489149

RESUMEN

The purpose of this prospective pilot study was to evaluate the feasibility and effects of cognitive-motor intervention on the cognitive and motor abilities of pediatric survivors of posterior fossa tumors. The study involved patients aged 7 to 18 years with cognitive deficits who had completed primary treatment for posterior fossa tumors. 25 participants (Mage=11.3 ± 2.93, 64% male; 17 medulloblastoma, 1 ependymoma, 1 desmoplastic medulloblastoma, 6 piloid astrocytoma; 22 in remission (Mmonths =45), 3 in stabilization (Mmonths=49)) were recruited from the Research Institute for Brain Development and Peak Performance. The intervention consisted of two phases with a 3-month break for home training, and a total duration of 6 months. Each phase lasted 7 weeks and included two assessment procedures (pre- and post-intervention) and 10 training sessions over a period of 5 weeks (two 3-hour sessions per week). At baseline and pre- and post-intervention, all participants underwent a battery of cognitive and motor tests. Each training session included gross motor training (GMT), graphomotor training (GT), and cognitive-motor training (CMT). Statistical analysis was performed using the Friedman test for repeated measures and post-hoc Durbin-Conover test. The results indicated significant improvements in visuospatial working memory, visual attention, eye-hand coordination, semantic verbal fluency, auditory-motor synchronization, reaction time, and a decrease in the rate of ataxia. These improvements remained stable even in the absence of direct intervention. The findings demonstrate positive effects and feasibility of the intervention and suggest the need for further research in this area including randomized controlled feasibility studies with a larger sample.

9.
BMC Geriatr ; 24(1): 277, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515012

RESUMEN

BACKGROUND: Early cognitive deficits commonly seen in older people have not been well defined and managed in primary care. The objectives are (1) to develop and validate a new risk score to estimate the risk of dementia in Chinese older population; and (2) to evaluate the use of risk score in conjunction with cognitive screening in detecting early cognitive deficits in community older people. METHODS: A development cohort of 306 cognitive healthy older adults aged 60 or above were followed for 6 years. A CARS was constructed using the estimated coefficients of risk factors associated with dementia at follow up. Validation was carried out in another five-year cohort of 383 older adults. The usefulness of CARS in detecting early cognitive deficits was evaluated. RESULTS: Risk factors include older age, male gender, low level of education, poorly controlled diabetes, prolonged sleep latency, fewer mind body or light exercise, loneliness, and being apolipoprotein e4 carriers. A cutoff of CARS at -1.3 had a sensitivity of 83.9% and a specificity of 75.4% to predict dementia. The area under curve was 82.5% in the development cohort. Early cognitive deficits were characterized by impaired retention (p <.001, 95% CI 0.2-0.9) and attention (p =.012, 95% CI 0.1-0.8). CONCLUSION: The CARS can be used as a standard risk assessment of dementia or in conjunction with a computerized cognitive screening to evaluate a full cognitive profile for detecting early cognitive deficits. The result put forward the integration of risk algorithm into smart healthcare system to provide personalized lifestyle interventions.


Asunto(s)
Disfunción Cognitiva , Demencia , Masculino , Humanos , Anciano , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/complicaciones , Factores de Riesgo , Demencia/diagnóstico , Cognición , Envejecimiento
10.
Curr Alzheimer Res ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38529601

RESUMEN

BACKGROUND: Alzheimer's Disease (AD) is the most prevalent type of dementia. The early change of gut microbiota is a potential biomarker for preclinical AD patients. OBJECTIVE: The study aimed to explore changes in gut microbiota characteristics in preclinical AD patients, including those with Subjective Cognitive Decline (SCD) and Mild Cognitive Impairment (MCI), and detect the correlation between gut microbiota characteristics and cognitive performances. METHODS: This study included 117 participants [33 MCI, 54 SCD, and 30 Healthy Controls (HC)]. We collected fresh fecal samples and blood samples from all participants and evaluated their cognitive performance. We analyzed the diversity and structure of gut microbiota in all participants through qPCR, screened characteristic microbial species through machine learning models, and explored the correlations between these species and cognitive performances and serum indicators. RESULTS: Compared to the healthy controls, the structure of gut microbiota in MCI and SCD patients was significantly different. The three characteristic microorganisms, including Bacteroides ovatus, Bifidobacterium adolescentis, and Roseburia inulinivorans, were screened based on the best classification model (HC and MCI) having intergroup differences. Bifidobacterium adolescentis is associated with better performance in multiple cognitive scores and several serum indicators. Roseburia inulinivorans showed negative correlations with the scores of the Functional Activities Questionnaire (FAQ). CONCLUSION: The gut microbiota in patients with preclinical AD has significantly changed in terms of composition and richness. Correlations have been discovered between changes in characteristic species and cognitive performances. Gut microbiota alterations have shown promise in affecting AD pathology and cognitive deficit.

11.
Br J Pharmacol ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38523471

RESUMEN

BACKGROUND AND PURPOSE: Kratom is a preparation from Mitragyna speciosa, which is used as a natural drug preparation for many purposes around the world. However, an overdose of Kratom may cause addiction-like problems including aversive withdrawal states resulting in cognitive impairments via unknown mechanisms. Its main psychoactive alkaloid is mitragynine, showing opioid-like properties. EXPERIMENTAL APPROACH: Here, we analysed the neuropharmacological effects of mitragynine compared with morphine withdrawal in rats and searched for a pharmacological treatment option that may reverse the occurring cognitive deficits that usually aggravate withdrawal. KEY RESULTS: We found that withdrawal from 14-day mitragynine (1-10 mg·kg-1·day-1) treatment caused dose-dependent behavioural withdrawal signs resembling those of morphine (5 mg·kg-1·day-1) withdrawal. However, mitragynine (5 and 10 mg·kg-1·day-1) withdrawal also induced impairments in a passive avoidance task. Mitragynine withdrawal not only reduced hippocampal field excitatory postsynaptic potential (fEPSP) amplitudes in basal synaptic transmission and long-term potentiation (LTP) but also reduced epigenetic markers, such as histone H3K9 and H4K12 expression. At the same time, it up-regulates HDAC2 expression. Targeting the epigenetic adaptations with the HDAC inhibitor, SAHA, reversed the effects of mitragynine withdrawal on epigenetic dysregulation, hippocampal input/output curves, paired-pulse facilitation, LTP and attenuated the cognitive deficit. However, SAHA amplified the effects of morphine withdrawal. CONCLUSION AND IMPLICATIONS: The data from this work show that changes in histone expression and downstream hippocampal plasticity may explain mitragynine, but not morphine, withdrawal behaviours and cognitive impairments. Thus, it may provide a new treatment approach for aversive Kratom/mitragynine withdrawal and addiction.

12.
JMIR Res Protoc ; 13: e52284, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38422499

RESUMEN

BACKGROUND: Telemonitoring of activities of daily living (ADLs) offers significant potential for gaining a deeper insight into the home care needs of older adults experiencing cognitive decline, particularly those living alone. In 2016, our team and a health care institution in Montreal, Quebec, Canada, sought to test this technology to enhance the support provided by home care clinical teams for older adults residing alone and facing cognitive deficits. The Support for Seniors' Autonomy program (SAPA [Soutien à l'autonomie des personnes âgées]) project was initiated within this context, embracing an innovative research approach that combines action research and design science. OBJECTIVE: This paper presents the research protocol for the SAPA project, with the aim of facilitating the replication of similar initiatives in the future. The primary objectives of the SAPA project were to (1) codevelop an ADL telemonitoring system aligned with the requirements of key stakeholders, (2) deploy the system in a real clinical environment to identify specific use cases, and (3) identify factors conducive to its sustained use in a real-world setting. Given the context of the SAPA project, the adoption of an action design research (ADR) approach was deemed crucial. ADR is a framework for crafting practical solutions to intricate problems encountered in a specific organizational context. METHODS: This project consisted of 2 cycles of development (alpha and beta) that involved cyclical repetitions of stages 2 and 3 to develop a telemonitoring system for ADLs. Stakeholders, such as health care managers, clinicians, older adults, and their families, were included in each codevelopment cycle. Qualitative and quantitative data were collected throughout this project. RESULTS: The first iterative cycle, the alpha cycle, took place from early 2016 to mid 2018. The first prototype of an ADL telemonitoring system was deployed in the homes of 4 individuals receiving home care services through a public health institution. The prototype was used to collect data about care recipients' ADL routines. Clinicians used the data to support their home care intervention plan, and the results are presented here. The prototype was successfully deployed and perceived as useful, although obstacles were encountered. Similarly, a second codevelopment cycle (beta cycle) took place in 3 public health institutions from late 2018 to late 2022. The telemonitoring system was installed in 31 care recipients' homes, and detailed results will be presented in future papers. CONCLUSIONS: To our knowledge, this is the first reported ADR project in ADL telemonitoring research that includes 2 iterative cycles of codevelopment and deployment embedded in the real-world clinical settings of a public health system. We discuss the artifacts, generalization of learning, and dissemination generated by this protocol in the hope of providing a concrete and replicable example of research partnerships in the field of digital health in cognitive aging. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR1-10.2196/52284.

13.
Acta Neurochir (Wien) ; 166(1): 88, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38372820

RESUMEN

BACKGROUND: Resuming professional activity after awake surgery for diffuse low-grade glioma (DLGG) is an important goal, which is not reached in every patient. Cognitive deficits can occur and persist after surgery. In this study, we analyzed the impact of mild cognitive impairments on the work resumption. METHODS: Fifty-four surgeries (including five redo surgeries) performed between 2012 and 2020 for grade 2 (45) and 3 (nine) DLGG in 49 professionally active patients (mean age 40 [range 23-58.) were included. We retrospectively extracted the results of semantic and phonemic verbal fluency tests from preoperative and 4-month postoperative cognitive assessments. Patients were interviewed about their working life after surgery, between April and June 2021. RESULTS: Patients (85%) returned to work, most within 3 to 6 months. Patients (76%) reported subjective complaints (primarily fatigue). Self-reported symptoms and individual and clinical variables had no impact on the work resumption. Late-postoperative average Z-scores in verbal fluency tasks were significantly lower than preoperative for the entire cohort (Wilcoxon test, p < 0.001 for semantic and p = 0.008 for phonemic fluency). The decrease in Z-scores was significantly greater (Mann Whitney U-test, semantic, p = 0.018; phonemic, p = 0.004) in the group of patients who did not return to work than in the group of patients who did. CONCLUSION: The proportion of patients returning to work was comparable to similar studies. A decrease in verbal fluency tasks could predict the inability to return to work.


Asunto(s)
Neoplasias Encefálicas , Trastornos del Conocimiento , Glioma , Humanos , Adulto , Neoplasias Encefálicas/cirugía , Estudios Retrospectivos , Vigilia , Glioma/cirugía
14.
Front Pharmacol ; 15: 1292807, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38348396

RESUMEN

Chemotherapy-related cognitive deficits (CRCI) as one of the common adverse drug reactions during chemotherapy that manifest as memory, attention, and executive function impairments. However, there are still no effective pharmacological therapies for the treatment of CRCI. Natural compounds have always inspired drug development and numerous natural products have shown potential therapeutic effects on CRCI. Nevertheless, improving the brain targeting of natural compounds in the treatment of CRCI is still a problem to be overcome at present and in the future. Accumulated evidence shows that nose-to-brain drug delivery may be an excellent carrier for natural compounds. Therefore, we reviewed natural products with potential anti-CRCI, focusing on the signaling pathway of these drugs' anti-CRCI effects, as well as the possibility and prospect of treating CRCI with natural compounds based on nose-to-brain drug delivery in the future. In conclusion, this review provides new insights to further explore natural products in the treatment of CRCI.

15.
Biomedicines ; 12(2)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38398003

RESUMEN

The glymphatic system has recently been shown to be important in neurological diseases, including diabetes. However, little is known about how the progressive onset of diabetes affects the glymphatic system. The aim of this study is to investigate the glymphatic system response to the progressive onset of diabetes in a rat model of type 2 diabetic mellitus. Male Wistar rats (n = 45) with and without diabetes were evaluated using MRI glymphatic tracer kinetics, functional tests, and brain tissue immunohistochemistry. Our data demonstrated that the contrast agent clearance impairment gradually progressed with the diabetic duration. The MRI data showed that an impairment in contrast clearance occurred prior to the cognitive deficits detected using functional tests and permitted the detection of an early DM stage compared to the immuno-histopathology and cognitive tests. Additionally, the quantitative MRI markers of brain waste clearance demonstrated region-dependent sensitivity in glymphatic impairment. The improved sensitivity of MRI markers in the olfactory bulb and the whole brain at an early DM stage may be attributed to the important role of the olfactory bulb in the parenchymal efflux pathway. MRI can provide sensitive quantitative markers of glymphatic impairment during the progression of DM and can be used as a valuable tool for the early diagnosis of DM with a potential for clinical application.

16.
Dev Sci ; : e13478, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321588

RESUMEN

Childhood adversity can lead to cognitive deficits or enhancements, depending on many factors. Though progress has been made, two challenges prevent us from integrating and better understanding these patterns. First, studies commonly use and interpret raw performance differences, such as response times, which conflate different stages of cognitive processing. Second, most studies either isolate or aggregate abilities, obscuring the degree to which individual differences reflect task-general (shared) or task-specific (unique) processes. We addressed these challenges using Drift Diffusion Modeling (DDM) and structural equation modeling (SEM). Leveraging a large, representative sample of 9-10 year-olds from the Adolescent Brain Cognitive Development (ABCD) study, we examined how two forms of adversity-material deprivation and household threat-were associated with performance on tasks measuring processing speed, inhibition, attention shifting, and mental rotation. Using DDM, we decomposed performance on each task into three distinct stages of processing: speed of information uptake, response caution, and stimulus encoding/response execution. Using SEM, we isolated task-general and task-specific variances in each processing stage and estimated their associations with the two forms of adversity. Youth with more exposure to household threat (but not material deprivation) showed slower task-general processing speed, but showed intact task-specific abilities. In addition, youth with more exposure to household threat tended to respond more cautiously in general. These findings suggest that traditional assessments might overestimate the extent to which childhood adversity reduces specific abilities. By combining DDM and SEM approaches, we can develop a more nuanced understanding of how adversity affects different aspects of youth's cognitive performance. RESEARCH HIGHLIGHT: To understand how childhood adversity shapes cognitive abilities, the field needs analytical approaches that can jointly document and explain patterns of lowered and enhanced performance. Using Drift Diffusion Modeling and Structural Equation Modeling, we analyzed associations between adversity and processing speed, inhibition, attention shifting, and mental rotation. Household threat, but not material deprivation, was mostly associated with slower task-general processing speed and more response caution. In contrast, task-specific abilities were largely intact. Researchers might overestimate the impact of childhood adversity on specific abilities and underestimate the impact on general processing speed and response caution using traditional measures.

17.
Brain Sci ; 14(2)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38391736

RESUMEN

Negative symptoms and cognitive deficits play a major role in psychosis and significantly influence the functional outcomes of patients, particularly those with a first episode of psychosis (FEP). However, limited research has explored the predictive capacity of cognitive deficits during FEP for subsequent negative symptomatology. Drawing from the Athens FEP research study, we conducted a retrospective longitudinal study in 80 individuals with FEP. All patients were drug naive at admission. Cognitive tests were administered at 1-month and 1-year post-admission, while negative symptomatology was assessed at the same time points using PANSS by trained raters. We considered confounding factors such as age, gender, duration of untreated psychosis (DUP), treatment received, premorbid social adjustment, and premorbid IQ. Univariate regression analysis identified cognitive domains that correlated with negative symptomatology. These, along with the confounders, were incorporated into a multiple regression, with the 1-year PANSS negative scale serving as the dependent variable. Employing the backward elimination technique, we found a statistically significant inverse relationship between the categories completed in the Wisconsin card sorting test (WCST) and the 1-year PANNS negative scale (p = 0.01), beyond the associations with DUP and the 1-month PANSS negative scale. Our results suggest that cognitive flexibility, a key component of executive functions, predicts negative symptom severity one year after FEP.

18.
J Prev Alzheimers Dis ; 11(2): 382-401, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38374745

RESUMEN

BACKGROUND: There are no drugs on the market that can reverse or slow Alzheimer's disease (AD) progression. A protease-resistant Cholecystokinin (CCK) analogue used in this study is based on the basic structure of CCK, which further increases the stability of the peptide fragment and prolongs its half-life in vivo. We observed a neuroprotective effect of CCK-8L in APPswe/PS1dE9 (APP/PS1) AD mice. However, its corresponding mechanisms still need to be elucidated. OBJECTIVE: This study examined CCK-8L's neuroprotective effects in enhancing cognitive impairment by regulating mitochondrial dynamics through AMPK/Drp1 pathway in the APP/PS1 AD mice. METHODS: Behavioural tests are applied to assess competence in cognitive functions. Transmission electron microscopy (TEM) was performed to observe the ultrastructure of mitochondria of hippocampal neurons, Immunofluorescent staining was employed to assay for Aß1-42, APP, Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and dynamin-related protein1 (Drp1). CRISPR/Cas9 was utilized for targeted knockout of the CCKB receptor (CCKBR) in the mouse APP/PS1 hippocampal CA1 region. A model of lentiviral vector-mediated overexpression of APP in N2a cells was constructed. RESULTS: In vivo, experiments revealed that CCK analogue and liraglutide significantly alleviated cognitive deficits in APP/PS1 mice, reduced Aß1-42 expression, and ameliorated l damage, which is associated with CCKBR activation in the hippocampal CA1 region of mice. In vitro tests showed that CCK inhibited mitochondrial fission and promoted fusion through AMPK/Drp1 pathway. CONCLUSIONS: CCK analogue ameliorates cognitive deficits and regulates mitochondrial dynamics by activating the CCKB receptor and the AMPK/Drp1 pathway in AD mice.


Asunto(s)
Enfermedad de Alzheimer , Colecistoquinina , Disfunción Cognitiva , Dinámicas Mitocondriales , Animales , Humanos , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Péptidos beta-Amiloides/metabolismo , Colecistoquinina/análogos & derivados , Colecistoquinina/farmacología , Colecistoquinina/uso terapéutico , Cognición , Disfunción Cognitiva/tratamiento farmacológico , Dinaminas/efectos de los fármacos , Dinaminas/metabolismo , Ratones Transgénicos , Dinámicas Mitocondriales/efectos de los fármacos
19.
Clin Neurol Neurosurg ; 237: 108145, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38340430

RESUMEN

Abulia is a common problem that manifests following various brain conditions, including brain surgeries. Abulia is felt to be related to dysfunction with the brain's dopamine-dependent circuitry. The role of default mode network (DMN) in its pathogenesis is crucial. In this case report, we detail the presentation of abulia in an elderly woman following surgical resection of a right frontal glioblastoma involving the DMN. Connectomic imaging was used pre-operatively and post-operatively, demonstrating disruption of regions integral to the DMN and the central executive network. We observed a significant cognitive improvement following the administration of levodopa and carbidopa. Preoperative assessment of both anatomical and functional networks can help ensure surgical safety and predict postoperative deficits. This evaluation not only enhances preparedness and facilitates early case diagnosis but also expedites the initiation of prompt and potentially targeted treatments. This case highlights the potential efficacy of levodopa and carbidopa in addressing DMN dysfunction and broadly suggests the potential for connectomics-guided post-operative therapies.


Asunto(s)
Conectoma , Femenino , Humanos , Anciano , Encéfalo/patología , Agonistas de Dopamina/uso terapéutico , Levodopa/uso terapéutico , Carbidopa/uso terapéutico , Imagen por Resonancia Magnética , Cognición , Lóbulo Frontal/diagnóstico por imagen , Lóbulo Frontal/cirugía
20.
Neurochem Res ; 49(5): 1200-1211, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38381245

RESUMEN

Cognitive dysfunctions are now recognized as core symptoms of various psychiatric disorders e.g., major depressive disorder. Sustained immune activation may leads to cognitive dysfunctions. Proinflammatory cytokines shunt the metabolism of tryptophan towards kynurenine and quinolinic acid may accumulate at toxic concentrations. This acid triggers an increase in neuronal nitric oxide synthase function and promotes oxidative stress. The searching for small molecules that can regulate tryptophan metabolites produced in the kynurenic pathway has become an important goal in developing treatments for various central nervous system diseases with an inflammatory component. Previously we have identified a small hybrid molecule - MM165 which significantly reduces depressive-like symptoms caused by inflammation induced by lipopolysaccharide administration. In the present study, we investigated whether this compound would mitigate cognitive deficits induced by lipopolysaccharide administration and whether treatment with it would affect the plasma or brain levels of quinolinic acid and kynurenic acid. Neuroinflammation was induced in rats by administering lipopolysaccharide at a dose of 0.5 mg/kg body weight for 10 days. We conducted two tests: novel object recognition and object location, to assess the effect on memory impairment in animals previously treated with lipopolysaccharide. In plasma collected from rats, the concentrations of C-reactive protein and tumor necrosis factor alfa were determined. The concentrations of kynurenic acid and quinolinic acid were determined in plasma and homogenates obtained from the cerebral cortex of rats. Interleukin 6 in the cerebral cortex of rats was determined. Additionally, the body and spleen mass and spontaneous activity were measured in rats. Our study shows that MM165 may mitigate cognitive deficits induced by inflammation after administration of lipopolysaccharide and alter the concentrations of tryptophan metabolites in the brain. Compounds exhibiting a mechanism of action analogous to that of MM165 may serve as foundational structures for the development of a new class of antidepressants.


Asunto(s)
Trastorno Depresivo Mayor , Quinurenina , Humanos , Ratas , Animales , Quinurenina/metabolismo , Triptófano/metabolismo , Lipopolisacáridos/toxicidad , Ácido Quinurénico/metabolismo , Ácido Quinolínico/toxicidad , Ácido Quinolínico/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...